Video Codec Trend

ARM

Media Processing Group

Regional Marketing Manager

Tian Wang

October 2017

Confidential © ARM 2016

I. Market RequirementsII. Video Codec HistoryIII. Video Codec Trend

I. Market Requirements

Market Requirements

Ultra Resolution and High Performance Codec

- The HD digital video services over network are expected to steadily grow
- The overall amount of video data will grow at a very fast pace
- 4K/8K codec requirements are emerging due to AR/VR and broadcasting requirements

Bigger Resolution and Data Rates

Tremendous Increase of Storage & Transmission Cost

• Raw Data rates in terms of various video formats

	Width	Height	Frame rate	Color format	Depth	Bit-rate (Mbps)	Ratio to SD
SD	720	480	30	YUV4:2:0	8bits	124	1
HD	1,920	1,080	30	YUV4:2:0	8bits	746	6
UHD	3,840	2,160	30	YUV4:2:0	8bits	2,986	24
	7,680	4,320	30	YUV4:2:0	8bits	11,944	96
	7,680	4,320	60	YUV4:4:4	12bits	71,664	578

Mobile Streaming

Video Continue to be majority of internet data traffic

- Booming requirements for network infrastructure (4G/5G)
- High-resolution video driving video traffic
- Adaptive streaming solutions gaining adoption i.e. Netflix, Youku, Youtube, IPTV

Source : Cisco

Source : ByteMobile

VR/AR

VR/AR Will Build Next Generation Computing System

- Fundamental changes in communication, entertainment or other applications
- Requires High-resolution and high performance video codec technology
- Over 120 Billion markets in 2020

VR Virtual Reality

AR Augmented Reality

II.Video Codec History

Main Video Standards Overview

Current Popular Video Standards

- MPEGI (1992): Lossy compression of video for VCD and broadcasting (1.5Mbps)
- H.263 (1995) : Low-bit-rate compressed format for video conferencing
- MPEG2 (1996) : Lossy compression of video for DVD and broadcasting
- RealVideo (1997) : Based on H.263 and widely used as streaming media format
- MPEG4 (1999) : Higher compression efficiency of video for web and broadcasting (Divx/Xvid based on it)
- H.264 (2003) : The most commonly used video formats developed by JVT (ITU/MPEG)
- VC-I (2003) : Developed by Microsoft and used in Blue-ray and HD-DVD
- VP8 (2008): Open and royalty free video format owned by Google and created by On2 Technologies
- H.265 (2013): Successor to the widely used H.264 for UHD broadcasting and internet
- VP9 (2014) : Successor to VP8, is an open and royalty free video coding format developed by Google
- AVS2 (2016): Chinese video standards for HD/UHD broadcasting, successor of AVS/AVS+

Why Need New Video Codec?

ISO/IEC HEVC : MPEG-H Part2 (ISO/IEC 23008-2)

- ITU-T: ITU-T Rec. H.265
- 3 Profiles
 - Main(8bit 4:2:0), Main10(8/10bit 4:2:0), Main Still Picture(8bit 4:2:0)
- 2 Tiers
 - Main tier(Consumer), High tier(Professional)

HEVC Overview

Scope & Goal

- Development of a standard for video coding technology more advanced (in terms of achievable combinations of compression capability, computational complexity, etc.) than the current AVC standard
- Expected to reduce bitrate requirements by half with comparable image quality at the expense of increased computational complexity

HEVC Key Features

- Larger blocks: more efficient representation of overhead (e.g., MB mode, MV, all signaling bits, etc.)
- Better prediction: more accurate and finer prediction by advanced intra/inter prediction
- Higher precision: minimizing loss due to finite processing precision

III.Video Codec Trend

Video Codec Trends

- General
 - Drive towards 8K60 support
 - Especially for TV
 - Less so for encode in short term
 - AVI (VP9 Successor)
 - High frame rate performance
 - 90fps for VR (60fps OLED)

- Encode
 - High frame rate encode
 - High Dynamic Range (HDR
 - Still mainly 4K based
 - Interest in 8K but limited for now

Daydream-ready phones

- Key Drivers
 - Japanese Olympics for 8K60 decode
 - Need TV's in market end 2019, SoCs by end 2018, IP early 2018
 - 360° Video & Mixed Reality
 - Need high frame rate aiming for 4K or 2K per eye
 - Video is decode only, Mixed Reality is encode & decode

ARN

YUV422/YUV444/Higher Bit-depth

- YUV422 for video
 - View it as a 'specification improvement' rather than a real improvement
 - Used for 'Professional' market
- YUV444 for video
 - It is preferred for highest quality video encoding
 - Cost is high in mobile devices, but do expect future premium products and TV to require it
 - Surprise fact, 8-bit YUV444 is requested for Video Conferencing
 - Required for sharing spreadsheets!
- What about higher bit-depth?
 - 8bit 1080P -> 10bit 4K 60fps -> 12bit 8K 60fps?

End to End HDR

End to end HDR

- Support from camera to display involving ISP, GPU, VPU, DPU, AD
- Support different HDR formats (Dolby Vision, HDR10, HDR10+, HLG, China HDR)
- Integration with AI engines

360 Degree VR Video

- VR is performance hungry
 - <20ms motion to photon latency</p>
 - 4K+ (4320x2160) (2kx2k per eye) by 2020
 - 75-120 fps requirements
 - Rendered Twice for Both eyes
 - Wider Field of View (90+ degrees)
- VR needs Specific Techniques
 - Timewarp / Spacewarp
 - Lens distortion correction/Chromatic Aberration
 - Foveated rendering
 - Eye Tracking

Thank you

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners. Copyright © 2016 ARM Limited

Confidential © ARM 2016

▶iveVideoStackCon 聚音视 研修不止于形

关注LiveVideoStack公众号 回复 王田ARM 为讲师评分

